A master functional for quantum field theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Determinants in Quantum Field Theory

Lecture notes on Functional Determinants in Quantum Field Theory given by Gerald Dunne at the 14th WE Heraeus Saalburg summer school in Wolfersdorf, Thuringia, in September 2008. Lecture notes taken by Babette Döbrich and exercises with solutions by Oliver Schlotterer.

متن کامل

The Master Field for QCD and q-Deformed Quantum Field Theory

The master fields for the large N limit of matrix models and gauge theory are constructed. The master fields satisfy to standard equations of relativistic field theory but fields are quantized according to a new rule. To define the master field we use the Yang-Feldman equation with a free field quantized in the Boltzmannian Fock space. The master field for gauge theory does not take values in a...

متن کامل

Field beables for quantum field theory

The deBroglie-Bohm pilot-wave theory is an interpretation of quantum theory in which the observer plays no fundamental role. In a pilot-wave theory, quantum systems are not only described by the state vector, but also by some additional variables. These additional variables, also called beables, can be particle positions, field configurations, strings, etc. In this paper we focus our attention ...

متن کامل

Quantum field theory for discrepancies

The concept of discrepancy plays an important rôle in the study of uniformity properties of point sets. For sets of random points, the discrepancy is a random variable. We apply techniques from quantum field theory to translate the problem of calculating the probability density of (quadratic) discrepancies into that of evaluating certain path integrals. Both their perturbative and non-perturbat...

متن کامل

Quantum Field Theory Course

Part I. Classical Mechanics 9 0. Intro 9 0.1. Mechanical systems 9 0.2. Lagrangian and Hamiltonian formulation 9 1. Lagrangian approach 10 1.1. Manifolds 10 1.2. Differentiation 11 1.3. Calculus of Variations on an interval 11 1.4. Lagrangian reformulation of Newton‘s equation 13 2. Hamiltonian approach 14 2.1. Metrics: linear algebra 14 2.2. The passage to the cotangent vector bundle via the k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal C

سال: 2013

ISSN: 1434-6044,1434-6052

DOI: 10.1140/epjc/s10052-013-2385-y